On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study
نویسندگان
چکیده
This paper addresses the solution of a cardinality boolean quadratic programming problem using three different approaches. The first transforms the original problem into six Mixed-Integer Linear Programming (MILP) formulations. The second approach takes one of the MILP formulations and relies on the specific features of an MILP solver, namely using starting incumbents, polishing, and callbacks. The last involves the direct solution of the original problem by solvers that can accomodate the nonlinear combinatorial problem. Particular emphasis is placed on the definition of the MILP reformulations and their comparison with the other approaches. The results indicate that the data of the problem has a strong influence on the performance of the different approaches, and that there are clear-cut approaches that are better for some instances of the data. A detailed analysis of the results is made to identify the most effective approaches for specific instances of the data. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/20072013) under grant agreement n. PCOFUND-GA-2009-246542 and from the Fundação para a Ciência e Tecnologia, Portugal, under grant agreement n. DFRH/WIIA/67/2011. Ricardo M. Lima Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. E-mail: [email protected] Tel.: +966 12 808 0434 Ignacio E. Grossmann Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA. E-mail: [email protected] Manuscript Click here to download Manuscript Lima_Grossmann_COA_Springer_Review_v3.pdf Click here to view linked References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 2 Ricardo M. Lima, Ignacio E. Grossmann
منابع مشابه
On the Solution of Nonconvex Cardinality Boolean Quadratic Programming problems
This paper addresses the solution of a nonlinear boolean quadratic programming problem using three different approaches. The first uses a classic linearization technique to transform the original problem into a Mixed Integer Linear Programming (MILP) problem for which multiple formulations are studied. The second uses the capabilities of current MILP solvers to deal with Mixed Integer Quadratic...
متن کاملAn iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach
Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of pro...
متن کاملSolving Box-Constrained Nonconvex Quadratic Programs
We present effective computational techniques for solving nonconvex quadratic programs with box constraints (BoxQP). We first observe that cutting planes obtained from the Boolean Quadric Polytope (BQP) are computationally effective at reducing the optimality gap of BoxQP. We next show that the Chvátal-Gomory closure of the BQP is given by the odd-cycle inequalities even when the underlying gra...
متن کاملConic Reformulations and Approximations to Some Subclasses of Nonconvex
DENG, ZHIBIN. Conic Reformulations and Approximations to Some Subclasses of Nonconvex Quadratic Programming Problems. (Under the direction of Dr. Shu-Cherng Fang.) In this dissertation, some subclasses of nonconvex quadratic programming problems are studied. We first study the nonconvex quadratic programming problem over the standard simplex with application to copositive matrix detection. A se...
متن کاملA dynamic programming approach for solving nonlinear knapsack problems
Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 66 شماره
صفحات -
تاریخ انتشار 2017